Structural studies of biologically active glycosylated polyamidoamine (PAMAM) dendrimers.
نویسندگان
چکیده
The partial modification of carboxylic acid terminated polyamidoamine (PAMAM) dendrimers with glucosamine has been reported to give dendrimer glucosamine conjugates novel immuno-modulatory and anti-angiogenic properties. Experimental analysis of these glycosylated dendrimers showed that, on average, eight glucosamine molecules were covalently bound to each dendrimer. In order to better understand the surface loading and distribution of these glucosamine molecules, molecular reactivity was determined by evaluation of electronic properties using frontier molecular orbital theory (FMOT) and molecular dynamics simulations. It was shown that the surface loading and distribution of zero length amide bond-conjugated glucosamine molecules was determined by both electronic effects and by the different dynamic conformations adopted by the modified dendrimer during the incremental addition of glucosamine. Importantly, the structural features and the dynamic behavior of the partially glycosylated generation 3.5 PAMAM dendrimer showed that its flexibility and polarity changed with the incremental addition of glucosamine. These peripheral glucosamine molecules remained available on the dendrimer's surface for interaction with the biological target.
منابع مشابه
Computational design principles for bioactive dendrimer based constructs as antagonists of the TLR4-MD-2-LPS complex.
The cell surface interaction between bacterial lipopolysaccharide (LPS), Toll-like receptor 4 (TLR4) and MD-2 is central to bacterial sepsis syndromes and wound healing. We have shown that a generation (G) 3.5 polyamidoamine (PAMAM) dendrimer that was partially glycosylated with glucosamine inhibits TLR4-MD-2-LPS induced inflammation in a rabbit model of tissue scaring. However, it was a mixtur...
متن کاملElectron Capture Dissociation, Electron Detachment Dissociation, and Collision-Induced Dissociation of Polyamidoamine (PAMAM) Dendrimer Ions with Amino, Amidoethanol, and Sodium Carboxylate Surface Groups
Here, we investigate the effect of the structure (generation) and nature of the surface groups of different polyamidoamine (PAMAM) dendrimers on electron-mediated dissociation, either electron capture dissociation (ECD) or electron detachment dissociation (EDD), and compare the fragmentation with that observed in collision-induced dissociation (CID). ECD and EDD of the PAMAM dendrimers resulted...
متن کاملSynthesis and characterization of termini azobenzene dendrimer
Some organic molecules can be isomerized upon photoirradiation and when accompanied by a change in the visible absorption spectrum, it is called photochromism. Azobenzenes are important part of molecular machines and nanotechnology, Which are This phenomenon is called photoisomerization Azobenzene (azo) chromophores , and have been incorporated into a wide variety of materials and molecular arc...
متن کاملConjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery.
We report on the preparation and characterization of poly(D, L-lactide-co-glycolide) (PLGA) microparticles with surface-conjugated polyamidoamine (PAMAM) dendrimers of varying generations. The buffering capacity and zeta-potential of the PLGA PAMAM microparticles increased with increasing generation level of the PAMAM dendrimer conjugated. Conjugation of the PAMAM dendrimer to the surface of th...
متن کاملInteraction between polyamidoamine (PAMAM) dendrimers and bovine insulin.
OBJECTIVE In this study the mechanism of interactions between polyamidoamine (PAMAM) dendrimers and bovine insulin was examined. The insulin is a 51 amino acid peptide-hormone involved in the homeostasis of blood glucose levels. This molecule consists of two chains - A and B - linked by two disulphide bridges. As insulin contains four tyrosine residues it was possible to evaluate dendrimers eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular modeling
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2011